generic_array/
sequence.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
//! Useful traits for manipulating sequences of data stored in `GenericArray`s

use super::*;
use core::mem::MaybeUninit;
use core::ops::{Add, Div, Mul, Sub};
use core::ptr;
use typenum::operator_aliases::*;

/// Defines some sequence with an associated length and iteration capabilities.
///
/// This is useful for passing N-length generic arrays as generics.
///
/// # Safety
/// Care must be taken when implementing such that methods are safe.
///
/// Lengths must match, and element drop on panic must be handled.
pub unsafe trait GenericSequence<T>: Sized + IntoIterator {
    /// `GenericArray` associated length
    type Length: ArrayLength;

    /// Owned sequence type used in conjunction with reference implementations of `GenericSequence`
    type Sequence: GenericSequence<T, Length = Self::Length> + FromIterator<T>;

    /// Initializes a new sequence instance using the given function.
    ///
    /// If the generator function panics while initializing the sequence,
    /// any already initialized elements will be dropped.
    fn generate<F>(f: F) -> Self::Sequence
    where
        F: FnMut(usize) -> T;

    /// Treats `self` as the right-hand operand in a zip operation
    ///
    /// This is optimized for stack-allocated `GenericArray`s
    #[cfg_attr(not(feature = "internals"), doc(hidden))]
    #[inline(always)]
    fn inverted_zip<B, U, F>(
        self,
        lhs: GenericArray<B, Self::Length>,
        mut f: F,
    ) -> MappedSequence<GenericArray<B, Self::Length>, B, U>
    where
        GenericArray<B, Self::Length>:
            GenericSequence<B, Length = Self::Length> + MappedGenericSequence<B, U>,
        Self: MappedGenericSequence<T, U>,
        F: FnMut(B, Self::Item) -> U,
    {
        unsafe {
            let mut left = ArrayConsumer::new(lhs);

            let (left_array_iter, left_position) = left.iter_position();

            FromIterator::from_iter(left_array_iter.zip(self).map(|(l, right_value)| {
                let left_value = ptr::read(l);

                *left_position += 1;

                f(left_value, right_value)
            }))
        }
    }

    /// Treats `self` as the right-hand operand in a zip operation
    #[cfg_attr(not(feature = "internals"), doc(hidden))]
    #[inline(always)]
    fn inverted_zip2<B, Lhs, U, F>(self, lhs: Lhs, mut f: F) -> MappedSequence<Lhs, B, U>
    where
        Lhs: GenericSequence<B, Length = Self::Length> + MappedGenericSequence<B, U>,
        Self: MappedGenericSequence<T, U>,
        F: FnMut(Lhs::Item, Self::Item) -> U,
    {
        FromIterator::from_iter(lhs.into_iter().zip(self).map(|(l, r)| f(l, r)))
    }
}

/// Accessor for `GenericSequence` item type, which is really `IntoIterator::Item`
///
/// For deeply nested generic mapped sequence types, like shown in `tests/generics.rs`,
/// this can be useful for keeping things organized.
pub type SequenceItem<T> = <T as IntoIterator>::Item;

unsafe impl<'a, T: 'a, S: GenericSequence<T>> GenericSequence<T> for &'a S
where
    &'a S: IntoIterator,
{
    type Length = S::Length;
    type Sequence = S::Sequence;

    #[inline(always)]
    fn generate<F>(f: F) -> Self::Sequence
    where
        F: FnMut(usize) -> T,
    {
        S::generate(f)
    }
}

unsafe impl<'a, T: 'a, S: GenericSequence<T>> GenericSequence<T> for &'a mut S
where
    &'a mut S: IntoIterator,
{
    type Length = S::Length;
    type Sequence = S::Sequence;

    #[inline(always)]
    fn generate<F>(f: F) -> Self::Sequence
    where
        F: FnMut(usize) -> T,
    {
        S::generate(f)
    }
}

/// Defines any `GenericSequence` which can be lengthened or extended by appending
/// or prepending an element to it.
///
/// Any lengthened sequence can be shortened back to the original using `pop_front` or `pop_back`
///
/// # Safety
/// While the [`append`](Lengthen::append) and [`prepend`](Lengthen::prepend)
/// methods are marked safe, care must be taken when implementing them.
pub unsafe trait Lengthen<T>: Sized + GenericSequence<T> {
    /// `GenericSequence` that has one more element than `Self`
    type Longer: Shorten<T, Shorter = Self>;

    /// Returns a new array with the given element appended to the end of it.
    ///
    /// Example:
    ///
    /// ```rust
    /// # use generic_array::{arr, sequence::Lengthen};
    ///
    /// let a = arr![1, 2, 3];
    ///
    /// let b = a.append(4);
    ///
    /// assert_eq!(b, arr![1, 2, 3, 4]);
    /// ```
    fn append(self, last: T) -> Self::Longer;

    /// Returns a new array with the given element prepended to the front of it.
    ///
    /// Example:
    ///
    /// ```rust
    /// # use generic_array::{arr, sequence::Lengthen};
    ///
    /// let a = arr![1, 2, 3];
    ///
    /// let b = a.prepend(4);
    ///
    /// assert_eq!(b, arr![4, 1, 2, 3]);
    /// ```
    fn prepend(self, first: T) -> Self::Longer;
}

/// Defines a `GenericSequence` which can be shortened by removing the first or last element from it.
///
/// Additionally, any shortened sequence can be lengthened by
/// appending or prepending an element to it.
///
/// # Safety
/// While the [`pop_back`](Shorten::pop_back) and [`pop_front`](Shorten::pop_front)
/// methods are marked safe, care must be taken when implementing them.
pub unsafe trait Shorten<T>: Sized + GenericSequence<T> {
    /// `GenericSequence` that has one less element than `Self`
    type Shorter: Lengthen<T, Longer = Self>;

    /// Returns a new array without the last element, and the last element.
    ///
    /// Example:
    ///
    /// ```rust
    /// # use generic_array::{arr, sequence::Shorten};
    ///
    /// let a = arr![1, 2, 3, 4];
    ///
    /// let (init, last) = a.pop_back();
    ///
    /// assert_eq!(init, arr![1, 2, 3]);
    /// assert_eq!(last, 4);
    /// ```
    fn pop_back(self) -> (Self::Shorter, T);

    /// Returns a new array without the first element, and the first element.
    /// Example:
    ///
    /// ```rust
    /// # use generic_array::{arr, sequence::Shorten};
    ///
    /// let a = arr![1, 2, 3, 4];
    ///
    /// let (head, tail) = a.pop_front();
    ///
    /// assert_eq!(head, 1);
    /// assert_eq!(tail, arr![2, 3, 4]);
    /// ```
    fn pop_front(self) -> (T, Self::Shorter);
}

unsafe impl<T, N: ArrayLength> Lengthen<T> for GenericArray<T, N>
where
    N: Add<B1>,
    Add1<N>: ArrayLength,
    Add1<N>: Sub<B1, Output = N>,
    Sub1<Add1<N>>: ArrayLength,
{
    type Longer = GenericArray<T, Add1<N>>;

    #[inline]
    fn append(self, last: T) -> Self::Longer {
        let mut longer: MaybeUninit<Self::Longer> = MaybeUninit::uninit();

        // Note this is *mut Self, so add(1) increments by the whole array
        let out_ptr = longer.as_mut_ptr() as *mut Self;

        unsafe {
            // write self first
            ptr::write(out_ptr, self);
            // increment past self, then write the last
            ptr::write(out_ptr.add(1) as *mut T, last);

            longer.assume_init()
        }
    }

    #[inline]
    fn prepend(self, first: T) -> Self::Longer {
        let mut longer: MaybeUninit<Self::Longer> = MaybeUninit::uninit();

        // Note this is *mut T, so add(1) increments by a single T
        let out_ptr = longer.as_mut_ptr() as *mut T;

        unsafe {
            // write the first at the start
            ptr::write(out_ptr, first);
            // increment past the first, then write self
            ptr::write(out_ptr.add(1) as *mut Self, self);

            longer.assume_init()
        }
    }
}

unsafe impl<T, N: ArrayLength> Shorten<T> for GenericArray<T, N>
where
    N: Sub<B1>,
    Sub1<N>: ArrayLength,
    Sub1<N>: Add<B1, Output = N>,
    Add1<Sub1<N>>: ArrayLength,
{
    type Shorter = GenericArray<T, Sub1<N>>;

    #[inline]
    fn pop_back(self) -> (Self::Shorter, T) {
        let whole = ManuallyDrop::new(self);

        unsafe {
            let init = ptr::read(whole.as_ptr() as _);
            let last = ptr::read(whole.as_ptr().add(Sub1::<N>::USIZE) as _);

            (init, last)
        }
    }

    #[inline]
    fn pop_front(self) -> (T, Self::Shorter) {
        // ensure this doesn't get dropped
        let whole = ManuallyDrop::new(self);

        unsafe {
            let head = ptr::read(whole.as_ptr() as _);
            let tail = ptr::read(whole.as_ptr().offset(1) as _);

            (head, tail)
        }
    }
}

/// Defines a `GenericSequence` that can be split into two parts at a given pivot index.
///
/// # Safety
/// While the [`split`](Split::split) method is marked safe,
/// care must be taken when implementing it.
pub unsafe trait Split<T, K: ArrayLength>: GenericSequence<T> {
    /// First part of the resulting split array
    type First: GenericSequence<T>;
    /// Second part of the resulting split array
    type Second: GenericSequence<T>;

    /// Splits an array at the given index, returning the separate parts of the array.
    fn split(self) -> (Self::First, Self::Second);
}

unsafe impl<T, N, K> Split<T, K> for GenericArray<T, N>
where
    N: ArrayLength,
    K: ArrayLength,
    N: Sub<K>,
    Diff<N, K>: ArrayLength,
{
    type First = GenericArray<T, K>;
    type Second = GenericArray<T, Diff<N, K>>;

    #[inline]
    fn split(self) -> (Self::First, Self::Second) {
        unsafe {
            // ensure this doesn't get dropped
            let whole = ManuallyDrop::new(self);

            let head = ptr::read(whole.as_ptr() as *const _);
            let tail = ptr::read(whole.as_ptr().add(K::USIZE) as *const _);

            (head, tail)
        }
    }
}

unsafe impl<'a, T, N, K> Split<T, K> for &'a GenericArray<T, N>
where
    N: ArrayLength,
    K: ArrayLength,
    N: Sub<K>,
    Diff<N, K>: ArrayLength,
{
    type First = &'a GenericArray<T, K>;
    type Second = &'a GenericArray<T, Diff<N, K>>;

    #[inline]
    fn split(self) -> (Self::First, Self::Second) {
        unsafe {
            let ptr_to_first: *const T = self.as_ptr();
            let head = &*(ptr_to_first as *const _);
            let tail = &*(ptr_to_first.add(K::USIZE) as *const _);
            (head, tail)
        }
    }
}

unsafe impl<'a, T, N, K> Split<T, K> for &'a mut GenericArray<T, N>
where
    N: ArrayLength,
    K: ArrayLength,
    N: Sub<K>,
    Diff<N, K>: ArrayLength,
{
    type First = &'a mut GenericArray<T, K>;
    type Second = &'a mut GenericArray<T, Diff<N, K>>;

    #[inline]
    fn split(self) -> (Self::First, Self::Second) {
        unsafe {
            let ptr_to_first: *mut T = self.as_mut_ptr();
            let head = &mut *(ptr_to_first as *mut _);
            let tail = &mut *(ptr_to_first.add(K::USIZE) as *mut _);
            (head, tail)
        }
    }
}

/// Defines `GenericSequence`s which can be joined together, forming a larger array.
///
/// # Safety
/// While the [`concat`](Concat::concat) method is marked safe,
/// care must be taken when implementing it.
pub unsafe trait Concat<T, M: ArrayLength>: GenericSequence<T> {
    /// Sequence to be concatenated with `self`
    type Rest: GenericSequence<T, Length = M>;

    /// Resulting sequence formed by the concatenation.
    type Output: GenericSequence<T>;

    /// Concatenate, or join, two sequences.
    fn concat(self, rest: Self::Rest) -> Self::Output;
}

unsafe impl<T, N, M> Concat<T, M> for GenericArray<T, N>
where
    N: ArrayLength + Add<M>,
    M: ArrayLength,
    Sum<N, M>: ArrayLength,
{
    type Rest = GenericArray<T, M>;
    type Output = GenericArray<T, Sum<N, M>>;

    #[inline]
    fn concat(self, rest: Self::Rest) -> Self::Output {
        let mut output: MaybeUninit<Self::Output> = MaybeUninit::uninit();

        let out_ptr = output.as_mut_ptr() as *mut Self;

        unsafe {
            // write all of self to the pointer
            ptr::write(out_ptr, self);
            // increment past self, then write the rest
            ptr::write(out_ptr.add(1) as *mut _, rest);

            output.assume_init()
        }
    }
}

/// Defines a `GenericSequence` which can be shortened by removing an element at a given index.
///
/// # Safety
/// While the [`remove`](Remove::remove) and [`swap_remove`](Remove::swap_remove) methods are marked safe,
/// care must be taken when implementing it. The [`remove_unchecked`](Remove::remove_unchecked)
/// and [`swap_remove_unchecked`](Remove::swap_remove_unchecked) methods are unsafe
/// and must be used with caution.
pub unsafe trait Remove<T, N: ArrayLength>: GenericSequence<T> {
    /// Resulting sequence formed by removing an element at the given index.
    type Output: GenericSequence<T>;

    /// Removes an element at the given index, shifting elements
    /// after the given index to the left to fill the gap, resulting
    /// in a time complexity of O(n) where `n=N-idx-1`
    ///
    /// # Example
    ///
    /// ```rust
    /// # use generic_array::{arr, sequence::Remove};
    /// let a = arr![1, 2, 3, 4];
    ///
    /// let (removed, b) = a.remove(2);
    /// assert_eq!(removed, 3);
    /// assert_eq!(b, arr![1, 2, 4]);
    /// ```
    ///
    /// # Panics
    ///
    /// Panics if the index is out of bounds.
    #[inline]
    fn remove(self, idx: usize) -> (T, Self::Output) {
        assert!(
            idx < N::USIZE,
            "Index out of bounds: the len is {} but the index is {}",
            N::USIZE,
            idx
        );

        unsafe { self.remove_unchecked(idx) }
    }

    /// Removes an element at the given index, swapping it with the last element.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use generic_array::{arr, sequence::Remove};
    /// let a = arr![1, 2, 3, 4];
    ///
    /// let (removed, b) = a.swap_remove(1);
    /// assert_eq!(removed, 2);
    /// assert_eq!(b, arr![1, 4, 3]); // note 4 is now at index 1
    /// ```
    ///
    /// # Panics
    ///
    /// Panics if the index is out of bounds.
    fn swap_remove(self, idx: usize) -> (T, Self::Output) {
        assert!(
            idx < N::USIZE,
            "Index out of bounds: the len is {} but the index is {}",
            N::USIZE,
            idx
        );

        unsafe { self.swap_remove_unchecked(idx) }
    }

    /// Removes an element at the given index without bounds checking,
    /// shifting elements after the given index to the left to fill the gap,
    /// resulting in a time complexity of O(n) where `n=N-idx-1`
    ///
    /// See [`remove`](Remove::remove) for an example.
    ///
    /// # Safety
    /// The caller must ensure that the index is within bounds, otherwise
    /// it is undefined behavior.
    unsafe fn remove_unchecked(self, idx: usize) -> (T, Self::Output);

    /// Removes an element at the given index without bounds checking, swapping it with the last element.
    ///
    /// See [`swap_remove`](Remove::swap_remove) for an example.
    ///
    /// # Safety
    /// The caller must ensure that the index is within bounds, otherwise
    /// it is undefined behavior.
    unsafe fn swap_remove_unchecked(self, idx: usize) -> (T, Self::Output);
}

unsafe impl<T, N> Remove<T, N> for GenericArray<T, N>
where
    N: ArrayLength + Sub<B1>,
    Sub1<N>: ArrayLength,
{
    type Output = GenericArray<T, Sub1<N>>;

    #[inline]
    unsafe fn remove_unchecked(self, idx: usize) -> (T, Self::Output) {
        if idx >= N::USIZE || N::USIZE == 0 {
            core::hint::unreachable_unchecked();
        }

        let mut array = ManuallyDrop::new(self);

        let dst = array.as_mut_ptr().add(idx);

        let removed = ptr::read(dst);

        // shift all elements over by one to fill gap
        ptr::copy(dst.add(1), dst, N::USIZE - idx - 1);

        // return removed element and truncated array
        (removed, mem::transmute_copy(&array))
    }

    #[inline]
    unsafe fn swap_remove_unchecked(self, idx: usize) -> (T, Self::Output) {
        if idx >= N::USIZE || N::USIZE == 0 {
            core::hint::unreachable_unchecked();
        }

        let mut array = ManuallyDrop::new(self);

        array.swap(idx, N::USIZE - 1);

        // remove the last element
        let removed = ptr::read(array.as_ptr().add(N::USIZE - 1));

        // return removed element and truncated array
        (removed, mem::transmute_copy(&array))
    }
}

/// Defines a `GenericSequence` of `GenericArray`s which can be flattened into a single `GenericArray`,
/// at zero cost.
///
/// # Safety
/// While the [`flatten`](Flatten::flatten) method is marked safe,
/// care must be taken when implementing it. However, the given trait bounds
/// should be sufficient to ensure safety.
pub unsafe trait Flatten<T, N, M>: GenericSequence<GenericArray<T, N>, Length = M>
where
    N: ArrayLength + Mul<M>,
    Prod<N, M>: ArrayLength,
{
    /// Flattened sequence type
    type Output: GenericSequence<T, Length = Prod<N, M>>;

    /// Flattens the sequence into a single `GenericArray`.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use generic_array::{arr, sequence::Flatten};
    /// assert_eq!(
    ///     arr![arr![1, 2], arr![3, 4], arr![5, 6]].flatten(),
    ///     arr![1, 2, 3, 4, 5, 6]
    /// );
    /// ```
    fn flatten(self) -> Self::Output;
}

/// Defines a `GenericSequence` of `T` which can be split evenly into a sequence of `GenericArray`s,
///
/// # Safety
/// While the [`unflatten`](Unflatten::unflatten) method is marked safe,
/// care must be taken when implementing it. However, the given trait bounds
/// should be sufficient to ensure safety.
pub unsafe trait Unflatten<T, NM, N>: GenericSequence<T, Length = NM>
where
    NM: ArrayLength + Div<N>,
    N: ArrayLength,
    Quot<NM, N>: ArrayLength,
{
    /// Unflattened sequence type
    type Output: GenericSequence<GenericArray<T, N>, Length = Quot<NM, N>>;

    /// Unflattens the sequence into a sequence of `GenericArray`s.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use generic_array::{arr, sequence::Unflatten};
    /// assert_eq!(
    ///     arr![1, 2, 3, 4, 5, 6].unflatten(),
    ///     arr![arr![1, 2], arr![3, 4], arr![5, 6]]
    /// );
    /// ```
    fn unflatten(self) -> Self::Output;
}

unsafe impl<T, N, M> Flatten<T, N, M> for GenericArray<GenericArray<T, N>, M>
where
    N: ArrayLength + Mul<M>,
    M: ArrayLength,
    Prod<N, M>: ArrayLength,
{
    type Output = GenericArray<T, Prod<N, M>>;

    #[inline(always)]
    fn flatten(self) -> Self::Output {
        unsafe { crate::const_transmute(self) }
    }
}

unsafe impl<'a, T, N, M> Flatten<T, N, M> for &'a GenericArray<GenericArray<T, N>, M>
where
    N: ArrayLength + Mul<M>,
    M: ArrayLength,
    Prod<N, M>: ArrayLength,
{
    type Output = &'a GenericArray<T, Prod<N, M>>;

    #[inline(always)]
    fn flatten(self) -> Self::Output {
        unsafe { mem::transmute(self) }
    }
}

unsafe impl<'a, T, N, M> Flatten<T, N, M> for &'a mut GenericArray<GenericArray<T, N>, M>
where
    N: ArrayLength + Mul<M>,
    M: ArrayLength,
    Prod<N, M>: ArrayLength,
{
    type Output = &'a mut GenericArray<T, Prod<N, M>>;

    #[inline(always)]
    fn flatten(self) -> Self::Output {
        unsafe { mem::transmute(self) }
    }
}

unsafe impl<T, NM, N> Unflatten<T, NM, N> for GenericArray<T, NM>
where
    NM: ArrayLength + Div<N>,
    N: ArrayLength,
    Quot<NM, N>: ArrayLength,
{
    type Output = GenericArray<GenericArray<T, N>, Quot<NM, N>>;

    #[inline(always)]
    fn unflatten(self) -> Self::Output {
        unsafe { crate::const_transmute(self) }
    }
}

unsafe impl<'a, T, NM, N> Unflatten<T, NM, N> for &'a GenericArray<T, NM>
where
    NM: ArrayLength + Div<N>,
    N: ArrayLength,
    Quot<NM, N>: ArrayLength,
{
    type Output = &'a GenericArray<GenericArray<T, N>, Quot<NM, N>>;

    #[inline(always)]
    fn unflatten(self) -> Self::Output {
        unsafe { mem::transmute(self) }
    }
}

unsafe impl<'a, T, NM, N> Unflatten<T, NM, N> for &'a mut GenericArray<T, NM>
where
    NM: ArrayLength + Div<N>,
    N: ArrayLength,
    Quot<NM, N>: ArrayLength,
{
    type Output = &'a mut GenericArray<GenericArray<T, N>, Quot<NM, N>>;

    #[inline(always)]
    fn unflatten(self) -> Self::Output {
        unsafe { mem::transmute(self) }
    }
}