generic_array/sequence.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
//! Useful traits for manipulating sequences of data stored in `GenericArray`s
use super::*;
use core::mem::MaybeUninit;
use core::ops::{Add, Div, Mul, Sub};
use core::ptr;
use typenum::operator_aliases::*;
/// Defines some sequence with an associated length and iteration capabilities.
///
/// This is useful for passing N-length generic arrays as generics.
///
/// # Safety
/// Care must be taken when implementing such that methods are safe.
///
/// Lengths must match, and element drop on panic must be handled.
pub unsafe trait GenericSequence<T>: Sized + IntoIterator {
/// `GenericArray` associated length
type Length: ArrayLength;
/// Owned sequence type used in conjunction with reference implementations of `GenericSequence`
type Sequence: GenericSequence<T, Length = Self::Length> + FromIterator<T>;
/// Initializes a new sequence instance using the given function.
///
/// If the generator function panics while initializing the sequence,
/// any already initialized elements will be dropped.
fn generate<F>(f: F) -> Self::Sequence
where
F: FnMut(usize) -> T;
/// Treats `self` as the right-hand operand in a zip operation
///
/// This is optimized for stack-allocated `GenericArray`s
#[cfg_attr(not(feature = "internals"), doc(hidden))]
#[inline(always)]
fn inverted_zip<B, U, F>(
self,
lhs: GenericArray<B, Self::Length>,
mut f: F,
) -> MappedSequence<GenericArray<B, Self::Length>, B, U>
where
GenericArray<B, Self::Length>:
GenericSequence<B, Length = Self::Length> + MappedGenericSequence<B, U>,
Self: MappedGenericSequence<T, U>,
F: FnMut(B, Self::Item) -> U,
{
unsafe {
let mut left = ArrayConsumer::new(lhs);
let (left_array_iter, left_position) = left.iter_position();
FromIterator::from_iter(left_array_iter.zip(self).map(|(l, right_value)| {
let left_value = ptr::read(l);
*left_position += 1;
f(left_value, right_value)
}))
}
}
/// Treats `self` as the right-hand operand in a zip operation
#[cfg_attr(not(feature = "internals"), doc(hidden))]
#[inline(always)]
fn inverted_zip2<B, Lhs, U, F>(self, lhs: Lhs, mut f: F) -> MappedSequence<Lhs, B, U>
where
Lhs: GenericSequence<B, Length = Self::Length> + MappedGenericSequence<B, U>,
Self: MappedGenericSequence<T, U>,
F: FnMut(Lhs::Item, Self::Item) -> U,
{
FromIterator::from_iter(lhs.into_iter().zip(self).map(|(l, r)| f(l, r)))
}
}
/// Accessor for `GenericSequence` item type, which is really `IntoIterator::Item`
///
/// For deeply nested generic mapped sequence types, like shown in `tests/generics.rs`,
/// this can be useful for keeping things organized.
pub type SequenceItem<T> = <T as IntoIterator>::Item;
unsafe impl<'a, T: 'a, S: GenericSequence<T>> GenericSequence<T> for &'a S
where
&'a S: IntoIterator,
{
type Length = S::Length;
type Sequence = S::Sequence;
#[inline(always)]
fn generate<F>(f: F) -> Self::Sequence
where
F: FnMut(usize) -> T,
{
S::generate(f)
}
}
unsafe impl<'a, T: 'a, S: GenericSequence<T>> GenericSequence<T> for &'a mut S
where
&'a mut S: IntoIterator,
{
type Length = S::Length;
type Sequence = S::Sequence;
#[inline(always)]
fn generate<F>(f: F) -> Self::Sequence
where
F: FnMut(usize) -> T,
{
S::generate(f)
}
}
/// Defines any `GenericSequence` which can be lengthened or extended by appending
/// or prepending an element to it.
///
/// Any lengthened sequence can be shortened back to the original using `pop_front` or `pop_back`
///
/// # Safety
/// While the [`append`](Lengthen::append) and [`prepend`](Lengthen::prepend)
/// methods are marked safe, care must be taken when implementing them.
pub unsafe trait Lengthen<T>: Sized + GenericSequence<T> {
/// `GenericSequence` that has one more element than `Self`
type Longer: Shorten<T, Shorter = Self>;
/// Returns a new array with the given element appended to the end of it.
///
/// Example:
///
/// ```rust
/// # use generic_array::{arr, sequence::Lengthen};
///
/// let a = arr![1, 2, 3];
///
/// let b = a.append(4);
///
/// assert_eq!(b, arr![1, 2, 3, 4]);
/// ```
fn append(self, last: T) -> Self::Longer;
/// Returns a new array with the given element prepended to the front of it.
///
/// Example:
///
/// ```rust
/// # use generic_array::{arr, sequence::Lengthen};
///
/// let a = arr![1, 2, 3];
///
/// let b = a.prepend(4);
///
/// assert_eq!(b, arr![4, 1, 2, 3]);
/// ```
fn prepend(self, first: T) -> Self::Longer;
}
/// Defines a `GenericSequence` which can be shortened by removing the first or last element from it.
///
/// Additionally, any shortened sequence can be lengthened by
/// appending or prepending an element to it.
///
/// # Safety
/// While the [`pop_back`](Shorten::pop_back) and [`pop_front`](Shorten::pop_front)
/// methods are marked safe, care must be taken when implementing them.
pub unsafe trait Shorten<T>: Sized + GenericSequence<T> {
/// `GenericSequence` that has one less element than `Self`
type Shorter: Lengthen<T, Longer = Self>;
/// Returns a new array without the last element, and the last element.
///
/// Example:
///
/// ```rust
/// # use generic_array::{arr, sequence::Shorten};
///
/// let a = arr![1, 2, 3, 4];
///
/// let (init, last) = a.pop_back();
///
/// assert_eq!(init, arr![1, 2, 3]);
/// assert_eq!(last, 4);
/// ```
fn pop_back(self) -> (Self::Shorter, T);
/// Returns a new array without the first element, and the first element.
/// Example:
///
/// ```rust
/// # use generic_array::{arr, sequence::Shorten};
///
/// let a = arr![1, 2, 3, 4];
///
/// let (head, tail) = a.pop_front();
///
/// assert_eq!(head, 1);
/// assert_eq!(tail, arr![2, 3, 4]);
/// ```
fn pop_front(self) -> (T, Self::Shorter);
}
unsafe impl<T, N: ArrayLength> Lengthen<T> for GenericArray<T, N>
where
N: Add<B1>,
Add1<N>: ArrayLength,
Add1<N>: Sub<B1, Output = N>,
Sub1<Add1<N>>: ArrayLength,
{
type Longer = GenericArray<T, Add1<N>>;
#[inline]
fn append(self, last: T) -> Self::Longer {
let mut longer: MaybeUninit<Self::Longer> = MaybeUninit::uninit();
// Note this is *mut Self, so add(1) increments by the whole array
let out_ptr = longer.as_mut_ptr() as *mut Self;
unsafe {
// write self first
ptr::write(out_ptr, self);
// increment past self, then write the last
ptr::write(out_ptr.add(1) as *mut T, last);
longer.assume_init()
}
}
#[inline]
fn prepend(self, first: T) -> Self::Longer {
let mut longer: MaybeUninit<Self::Longer> = MaybeUninit::uninit();
// Note this is *mut T, so add(1) increments by a single T
let out_ptr = longer.as_mut_ptr() as *mut T;
unsafe {
// write the first at the start
ptr::write(out_ptr, first);
// increment past the first, then write self
ptr::write(out_ptr.add(1) as *mut Self, self);
longer.assume_init()
}
}
}
unsafe impl<T, N: ArrayLength> Shorten<T> for GenericArray<T, N>
where
N: Sub<B1>,
Sub1<N>: ArrayLength,
Sub1<N>: Add<B1, Output = N>,
Add1<Sub1<N>>: ArrayLength,
{
type Shorter = GenericArray<T, Sub1<N>>;
#[inline]
fn pop_back(self) -> (Self::Shorter, T) {
let whole = ManuallyDrop::new(self);
unsafe {
let init = ptr::read(whole.as_ptr() as _);
let last = ptr::read(whole.as_ptr().add(Sub1::<N>::USIZE) as _);
(init, last)
}
}
#[inline]
fn pop_front(self) -> (T, Self::Shorter) {
// ensure this doesn't get dropped
let whole = ManuallyDrop::new(self);
unsafe {
let head = ptr::read(whole.as_ptr() as _);
let tail = ptr::read(whole.as_ptr().offset(1) as _);
(head, tail)
}
}
}
/// Defines a `GenericSequence` that can be split into two parts at a given pivot index.
///
/// # Safety
/// While the [`split`](Split::split) method is marked safe,
/// care must be taken when implementing it.
pub unsafe trait Split<T, K: ArrayLength>: GenericSequence<T> {
/// First part of the resulting split array
type First: GenericSequence<T>;
/// Second part of the resulting split array
type Second: GenericSequence<T>;
/// Splits an array at the given index, returning the separate parts of the array.
fn split(self) -> (Self::First, Self::Second);
}
unsafe impl<T, N, K> Split<T, K> for GenericArray<T, N>
where
N: ArrayLength,
K: ArrayLength,
N: Sub<K>,
Diff<N, K>: ArrayLength,
{
type First = GenericArray<T, K>;
type Second = GenericArray<T, Diff<N, K>>;
#[inline]
fn split(self) -> (Self::First, Self::Second) {
unsafe {
// ensure this doesn't get dropped
let whole = ManuallyDrop::new(self);
let head = ptr::read(whole.as_ptr() as *const _);
let tail = ptr::read(whole.as_ptr().add(K::USIZE) as *const _);
(head, tail)
}
}
}
unsafe impl<'a, T, N, K> Split<T, K> for &'a GenericArray<T, N>
where
N: ArrayLength,
K: ArrayLength,
N: Sub<K>,
Diff<N, K>: ArrayLength,
{
type First = &'a GenericArray<T, K>;
type Second = &'a GenericArray<T, Diff<N, K>>;
#[inline]
fn split(self) -> (Self::First, Self::Second) {
unsafe {
let ptr_to_first: *const T = self.as_ptr();
let head = &*(ptr_to_first as *const _);
let tail = &*(ptr_to_first.add(K::USIZE) as *const _);
(head, tail)
}
}
}
unsafe impl<'a, T, N, K> Split<T, K> for &'a mut GenericArray<T, N>
where
N: ArrayLength,
K: ArrayLength,
N: Sub<K>,
Diff<N, K>: ArrayLength,
{
type First = &'a mut GenericArray<T, K>;
type Second = &'a mut GenericArray<T, Diff<N, K>>;
#[inline]
fn split(self) -> (Self::First, Self::Second) {
unsafe {
let ptr_to_first: *mut T = self.as_mut_ptr();
let head = &mut *(ptr_to_first as *mut _);
let tail = &mut *(ptr_to_first.add(K::USIZE) as *mut _);
(head, tail)
}
}
}
/// Defines `GenericSequence`s which can be joined together, forming a larger array.
///
/// # Safety
/// While the [`concat`](Concat::concat) method is marked safe,
/// care must be taken when implementing it.
pub unsafe trait Concat<T, M: ArrayLength>: GenericSequence<T> {
/// Sequence to be concatenated with `self`
type Rest: GenericSequence<T, Length = M>;
/// Resulting sequence formed by the concatenation.
type Output: GenericSequence<T>;
/// Concatenate, or join, two sequences.
fn concat(self, rest: Self::Rest) -> Self::Output;
}
unsafe impl<T, N, M> Concat<T, M> for GenericArray<T, N>
where
N: ArrayLength + Add<M>,
M: ArrayLength,
Sum<N, M>: ArrayLength,
{
type Rest = GenericArray<T, M>;
type Output = GenericArray<T, Sum<N, M>>;
#[inline]
fn concat(self, rest: Self::Rest) -> Self::Output {
let mut output: MaybeUninit<Self::Output> = MaybeUninit::uninit();
let out_ptr = output.as_mut_ptr() as *mut Self;
unsafe {
// write all of self to the pointer
ptr::write(out_ptr, self);
// increment past self, then write the rest
ptr::write(out_ptr.add(1) as *mut _, rest);
output.assume_init()
}
}
}
/// Defines a `GenericSequence` which can be shortened by removing an element at a given index.
///
/// # Safety
/// While the [`remove`](Remove::remove) and [`swap_remove`](Remove::swap_remove) methods are marked safe,
/// care must be taken when implementing it. The [`remove_unchecked`](Remove::remove_unchecked)
/// and [`swap_remove_unchecked`](Remove::swap_remove_unchecked) methods are unsafe
/// and must be used with caution.
pub unsafe trait Remove<T, N: ArrayLength>: GenericSequence<T> {
/// Resulting sequence formed by removing an element at the given index.
type Output: GenericSequence<T>;
/// Removes an element at the given index, shifting elements
/// after the given index to the left to fill the gap, resulting
/// in a time complexity of O(n) where `n=N-idx-1`
///
/// # Example
///
/// ```rust
/// # use generic_array::{arr, sequence::Remove};
/// let a = arr![1, 2, 3, 4];
///
/// let (removed, b) = a.remove(2);
/// assert_eq!(removed, 3);
/// assert_eq!(b, arr![1, 2, 4]);
/// ```
///
/// # Panics
///
/// Panics if the index is out of bounds.
#[inline]
fn remove(self, idx: usize) -> (T, Self::Output) {
assert!(
idx < N::USIZE,
"Index out of bounds: the len is {} but the index is {}",
N::USIZE,
idx
);
unsafe { self.remove_unchecked(idx) }
}
/// Removes an element at the given index, swapping it with the last element.
///
/// # Example
///
/// ```rust
/// # use generic_array::{arr, sequence::Remove};
/// let a = arr![1, 2, 3, 4];
///
/// let (removed, b) = a.swap_remove(1);
/// assert_eq!(removed, 2);
/// assert_eq!(b, arr![1, 4, 3]); // note 4 is now at index 1
/// ```
///
/// # Panics
///
/// Panics if the index is out of bounds.
fn swap_remove(self, idx: usize) -> (T, Self::Output) {
assert!(
idx < N::USIZE,
"Index out of bounds: the len is {} but the index is {}",
N::USIZE,
idx
);
unsafe { self.swap_remove_unchecked(idx) }
}
/// Removes an element at the given index without bounds checking,
/// shifting elements after the given index to the left to fill the gap,
/// resulting in a time complexity of O(n) where `n=N-idx-1`
///
/// See [`remove`](Remove::remove) for an example.
///
/// # Safety
/// The caller must ensure that the index is within bounds, otherwise
/// it is undefined behavior.
unsafe fn remove_unchecked(self, idx: usize) -> (T, Self::Output);
/// Removes an element at the given index without bounds checking, swapping it with the last element.
///
/// See [`swap_remove`](Remove::swap_remove) for an example.
///
/// # Safety
/// The caller must ensure that the index is within bounds, otherwise
/// it is undefined behavior.
unsafe fn swap_remove_unchecked(self, idx: usize) -> (T, Self::Output);
}
unsafe impl<T, N> Remove<T, N> for GenericArray<T, N>
where
N: ArrayLength + Sub<B1>,
Sub1<N>: ArrayLength,
{
type Output = GenericArray<T, Sub1<N>>;
#[inline]
unsafe fn remove_unchecked(self, idx: usize) -> (T, Self::Output) {
if idx >= N::USIZE || N::USIZE == 0 {
core::hint::unreachable_unchecked();
}
let mut array = ManuallyDrop::new(self);
let dst = array.as_mut_ptr().add(idx);
let removed = ptr::read(dst);
// shift all elements over by one to fill gap
ptr::copy(dst.add(1), dst, N::USIZE - idx - 1);
// return removed element and truncated array
(removed, mem::transmute_copy(&array))
}
#[inline]
unsafe fn swap_remove_unchecked(self, idx: usize) -> (T, Self::Output) {
if idx >= N::USIZE || N::USIZE == 0 {
core::hint::unreachable_unchecked();
}
let mut array = ManuallyDrop::new(self);
array.swap(idx, N::USIZE - 1);
// remove the last element
let removed = ptr::read(array.as_ptr().add(N::USIZE - 1));
// return removed element and truncated array
(removed, mem::transmute_copy(&array))
}
}
/// Defines a `GenericSequence` of `GenericArray`s which can be flattened into a single `GenericArray`,
/// at zero cost.
///
/// # Safety
/// While the [`flatten`](Flatten::flatten) method is marked safe,
/// care must be taken when implementing it. However, the given trait bounds
/// should be sufficient to ensure safety.
pub unsafe trait Flatten<T, N, M>: GenericSequence<GenericArray<T, N>, Length = M>
where
N: ArrayLength + Mul<M>,
Prod<N, M>: ArrayLength,
{
/// Flattened sequence type
type Output: GenericSequence<T, Length = Prod<N, M>>;
/// Flattens the sequence into a single `GenericArray`.
///
/// # Example
///
/// ```rust
/// # use generic_array::{arr, sequence::Flatten};
/// assert_eq!(
/// arr![arr![1, 2], arr![3, 4], arr![5, 6]].flatten(),
/// arr![1, 2, 3, 4, 5, 6]
/// );
/// ```
fn flatten(self) -> Self::Output;
}
/// Defines a `GenericSequence` of `T` which can be split evenly into a sequence of `GenericArray`s,
///
/// # Safety
/// While the [`unflatten`](Unflatten::unflatten) method is marked safe,
/// care must be taken when implementing it. However, the given trait bounds
/// should be sufficient to ensure safety.
pub unsafe trait Unflatten<T, NM, N>: GenericSequence<T, Length = NM>
where
NM: ArrayLength + Div<N>,
N: ArrayLength,
Quot<NM, N>: ArrayLength,
{
/// Unflattened sequence type
type Output: GenericSequence<GenericArray<T, N>, Length = Quot<NM, N>>;
/// Unflattens the sequence into a sequence of `GenericArray`s.
///
/// # Example
///
/// ```rust
/// # use generic_array::{arr, sequence::Unflatten};
/// assert_eq!(
/// arr![1, 2, 3, 4, 5, 6].unflatten(),
/// arr![arr![1, 2], arr![3, 4], arr![5, 6]]
/// );
/// ```
fn unflatten(self) -> Self::Output;
}
unsafe impl<T, N, M> Flatten<T, N, M> for GenericArray<GenericArray<T, N>, M>
where
N: ArrayLength + Mul<M>,
M: ArrayLength,
Prod<N, M>: ArrayLength,
{
type Output = GenericArray<T, Prod<N, M>>;
#[inline(always)]
fn flatten(self) -> Self::Output {
unsafe { crate::const_transmute(self) }
}
}
unsafe impl<'a, T, N, M> Flatten<T, N, M> for &'a GenericArray<GenericArray<T, N>, M>
where
N: ArrayLength + Mul<M>,
M: ArrayLength,
Prod<N, M>: ArrayLength,
{
type Output = &'a GenericArray<T, Prod<N, M>>;
#[inline(always)]
fn flatten(self) -> Self::Output {
unsafe { mem::transmute(self) }
}
}
unsafe impl<'a, T, N, M> Flatten<T, N, M> for &'a mut GenericArray<GenericArray<T, N>, M>
where
N: ArrayLength + Mul<M>,
M: ArrayLength,
Prod<N, M>: ArrayLength,
{
type Output = &'a mut GenericArray<T, Prod<N, M>>;
#[inline(always)]
fn flatten(self) -> Self::Output {
unsafe { mem::transmute(self) }
}
}
unsafe impl<T, NM, N> Unflatten<T, NM, N> for GenericArray<T, NM>
where
NM: ArrayLength + Div<N>,
N: ArrayLength,
Quot<NM, N>: ArrayLength,
{
type Output = GenericArray<GenericArray<T, N>, Quot<NM, N>>;
#[inline(always)]
fn unflatten(self) -> Self::Output {
unsafe { crate::const_transmute(self) }
}
}
unsafe impl<'a, T, NM, N> Unflatten<T, NM, N> for &'a GenericArray<T, NM>
where
NM: ArrayLength + Div<N>,
N: ArrayLength,
Quot<NM, N>: ArrayLength,
{
type Output = &'a GenericArray<GenericArray<T, N>, Quot<NM, N>>;
#[inline(always)]
fn unflatten(self) -> Self::Output {
unsafe { mem::transmute(self) }
}
}
unsafe impl<'a, T, NM, N> Unflatten<T, NM, N> for &'a mut GenericArray<T, NM>
where
NM: ArrayLength + Div<N>,
N: ArrayLength,
Quot<NM, N>: ArrayLength,
{
type Output = &'a mut GenericArray<GenericArray<T, N>, Quot<NM, N>>;
#[inline(always)]
fn unflatten(self) -> Self::Output {
unsafe { mem::transmute(self) }
}
}