1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
use super::coordinates::{Point, CoordinateSystem};
use super::tensors::{TwoForm, InvTwoForm, Tensor, CovariantIndex, ContravariantIndex, InnerProduct};
use typenum::{Pow, Exp};
use typenum::consts::{U1, U2, U3};
use generic_array::ArrayLength;
pub trait MetricSystem: CoordinateSystem
where <Self as CoordinateSystem>::Dimension: Pow<U2> + Pow<U3>,
Exp<<Self as CoordinateSystem>::Dimension, U2>: ArrayLength<f64>,
Exp<<Self as CoordinateSystem>::Dimension, U3>: ArrayLength<f64>
{
fn g(point: &Point<Self>) -> TwoForm<Self>;
fn inv_g(point: &Point<Self>) -> InvTwoForm<Self> { Self::g(point).inverse().unwrap() }
fn dg(point: &Point<Self>) -> Tensor<Self, (CovariantIndex, (CovariantIndex, CovariantIndex))> {
let d = Self::dimension();
let mut result = Tensor::new(point.clone());
let h = Self::small(point);
for j in 0..d {
let mut x = point.clone();
x[j] = x[j] - h;
let g1 = Self::g(&x);
x[j] = x[j] + h * 2.0;
let g2 = Self::g(&x);
for coord in g1.iter_coords() {
let index = [coord[0], coord[1], j];
result[&index[..]] = (g2[&*coord] - g1[&*coord]) / (2.0 * h);
}
}
result
}
fn covariant_christoffel(point: &Point<Self>) -> Tensor<Self, (CovariantIndex, (CovariantIndex, CovariantIndex))> {
let dg = Self::dg(point);
let mut result = Tensor::<Self, (CovariantIndex, (CovariantIndex, CovariantIndex))>::new(point.clone());
for i in result.iter_coords() {
result[&*i] = 0.5*(dg[&*i] + dg[&[i[0],i[2],i[1]][..]] - dg[&[i[1], i[2], i[0]][..]]);
}
result
}
fn christoffel(point: &Point<Self>) -> Tensor<Self, (ContravariantIndex, (CovariantIndex, CovariantIndex))> {
let ig = Self::inv_g(point);
let gamma = Self::covariant_christoffel(point);
<InvTwoForm<Self> as InnerProduct<Tensor<Self, (CovariantIndex, (CovariantIndex, CovariantIndex))>, U1, U2>>::inner_product(ig, gamma)
}
}